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Abstract

Electromagnetic fields induced by the space charge in relativistic beams play an important role

in Accelerator Physics. They lead to emittance growth, slice energy change, and the microbunching

instability. Typically, these effects are modeled numerically since simple description exists only in

the limits of large- or small-scale current variations. In this paper we consider an axially symmetric

charged beam inside a round pipe and find the solution of the space charge problem that is valid

in the full range of current variations. We express the solution for the field components in terms

of Green’s functions, which are fully determined by just a single function. We then find that this

function is an on-axis potential from a charged disk in a round pipe, with transverse charge density

ρ⊥(r), and it has a compact analythical expression. We finally provide an integrated Green’s

function based approach for efficient numerical evaluation in the case when the transverse charge

density stays the same along the beam.

∗ petr@lanl.gov
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I. INTRODUCTION

The space charge effect is a basic collective phenomenon in Accelerator Physics that

plays an important role both in electron and proton machines. In high current regimes, self-

generated electromagnetic fields become so strong that they lead to significant emittance

growth [8, 11, 13, 15], slice energy change, and the microbunching instability [12], which is

especially detrimental in the context of free electron laser linacs [5, 12]. In the case of x-ray

free electron lasers with periodic enhancement of electron peak current [14, 22, 24], strong

longitudinal current modulation may result in large space charge forces which, in turn, may

limit the performance of these schemes.

Compact analytical expressions for the space charge induced fields are currently available

in the limits of either large- or small-scale current variations. The first limit provides a local

description [7] while the second limit requires an impedance based description [20] that is

non-local as it depends on the Fourier spectrum of the current. This latter approach allows

for semi-analytical treatment and is implemented in the Elegant numerical code [4] in order

to include longitudinal space charge effects on a beam axis.

An alternative approach adopted in many numerical codes, such as OPAL [2], Astra

[9], and Parmela [3]. This approach uses a Poison solver in order to find the space charge

induced fields. However it is very time consuming and a semi-analytic description for the

space charge induced fields applicable in the full range of current variations is highly desired.

In this paper we provide a semi-analytical description of the space charge problem in the

case of an axially symmetric beam in a round pipe. The derived expressions for components

of the induced field are valid in the full range of current variations. They also can be

efficiently evaluated by the method of Integrated Green’s functions (IGF).

We present our approach in Section II, where we find that the Green’s function for a

charged disk in a round pipe fully determines the components of the induced fields. In

Section III, we express the Green’s function in terms of an on-axis potential from a charged

disk in a round pipe and find a compact analytical approximation for this potential. Section

IV uses the compact analytical expression for the Green’s function in order to present the

field components in a form suitable for the IGF approach. In Section V we suggest how to

improve a semi-analytical description of the space charge fields in numerical codes such as

Elegant by providing a step-by-step instructions of IGF approach with our Green’s function.
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FIG. 1. An axially symmetric electron beam in a perfectly conducting pipe of radius a. A disk

section of length dz and the transverese charge density ρ⊥ (r, z), where z is a coordinate along the

beam in the beam reference frame, is shown.

We finally summarize our findings in the conclusion.

II. BASIC EQUATIONS FOR THE SPACE CHARGE FIELDS

The most general approach considers an electron beam with charge density ρ(r) that

travels on axis of a perfectly conducting pipe of radius a at a speed vz (see Fig. 1). It starts

in the beam frame, R, where the electrostatic potential induced by the space charge, %(R),

is a solution of the Poisson equation:

Φ(R) =
1

4πε0

∫
%(R′)Γ(R|R′)d3R′, (1)

where Γ(R|R′) is the Green’s function for the Laplace’s equation inside a perfectly conduct-

ing pipe. The corresponding Green’s function is derived in Appendix as an expansion in

terms of radial-azimuthal eignenfunctions that can be used in systems without translational

symmetry.

In this paper, we will consider axially symmetric densities in the lab frame, r, of the

form ρ(r) = ρ⊥(r)λ(z) with normalization
∫
ρ⊥(r′)d2r′ = 1. In this case, the electrostatic

potential in the beam frame is expressed as

Φ(R,Z) =
1

4πε0

∫ ∞
−∞

Λ(Z ′)G(R,Z − Z ′)dZ ′, (2)

where Λ(Z ′) = γ−1λ(Z ′/γ) and

G(R,Z − Z ′) =
∞∑
n=1

2cnJ0(µ0,nR/a)

aµ0,nJ1(µ0,n)2
e−µ0,n|Z−Z

′|/a, (3)
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with cn =
∫
ρ⊥(r′)J0(µ0,nr

′/a)d2r′ that has to be individually calculated for different trans-

verse density profiles. In the particular case of cn = 1, one recovers a result for an electro-

static potential of a point charge on the axis of a perfectly conducting pipe (see Eq. (27) in

Ref. [6]).

The electrostatic potential in the beam reference frame results in the electric field with

longitudinal and transverse components that have the following expressions in the lab frame

Ez(r, z) = − 1

4πε0γ

∫ ∞
−∞

λ(z′)
∂

∂z
g(r, z − z′)dz′, (4)

Er(r, z) = − γ

4πε0

∫ ∞
−∞

λ(z′)
∂

∂r
g(r, z − z′)dz′, (5)

in terms of transformed to the lab frame Green’s function, g(r, z − z′) = G(r, γz − γz′).

Additionally, in the lab frame, there is also an azimuthal magnetic field Bφ(r, z) = vz
c2
Er(r, z),

which reduces the overall transverse space charge force acting on charged particles in the

beam by γ−2.

III. GREEN’S FUNCTION ANALYSIS

In the previous section, we have reduced the problem of space charge induced fields to

the finding Green’s function, G(R,Z − Z ′), — the electrostatic potential from a charge

distribution, %(R) = ρ⊥(R)δ(Z−Z ′). Due to the axial symmetry of the charge distribution,

one can use the Poisson representation [18] in order to the potential outside the axis of

symmetry once the potential on the axis has been found:

G(R,Z − Z ′) =
1

2π

∫ 2π

0

G(0, Z − Z ′ + iR cosφ)dφ, Z > Z ′, (6)

where

G(0, Z − Z ′) =
∞∑
n=1

2cn
aµ0,nJ1(µ0,n)2

e−µ0,n|Z−Z
′|/a. (7)

Sometimes, however, the integral cannot be taken analytically or potential has to be found

near the axis. Therefore, we propose an alternative approach here based on the formal

separation of variables:

G(R,Z − Z ′) ≡ J0

(
R
∂

∂Z

)
G(0, Z − Z ′), Z 6= Z ′, (8)

where a function of a derivative is defined via its Taylor series expansion [16]. As a con-

sequence of our approach, one can confirm, based on a formal substitution x → R ∂
∂Z

into
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FIG. 2. (Color online) An on-axis Green’s function, G(0, Z − Z ′), in case of uniform transverse

distribution for different values of b/a = 0.1 (dashed red), 0.01 (dot dashed green) and 0.001 (solid

blue). The short-range behavior, |Z − Z ′| � a, corresponds to the potential from a uniformly

charged disk of radius b in free space. As distance increases, |Z − Z ′| � b, the on-axis Green’s

function becomes the potential of a point charge in a pipe. Transformation to the lab frame

substitutes Z → γz thus scaling the transitions points to a/γ and b/γ correspondingly.

the Bessel differential equation,
(
x2 d2

dx2
+ x d

dx
+ x2

)
J0 (x) = 0, that the derived Green’s

function is indeed a solution of the Laplace equation,
(

∂2

∂R2 + 1
R

∂
∂R

+ ∂2

∂Z2

)
G(R,Z−Z ′) = 0.

As the transformed Green’s function is g(r, z− z′) = G(r, γz−γz′), we have just reduced

the space charge problem to finding electrostatic potential on the pipe axis, G(0, Z − Z ′),

which is shown in Fig. 2, in the case of a uniform transverse distribution, ρ⊥(r < b) = 1/πb2,

for different values of b/a. It shows that there are two distinct regions with different behaviors

of the Green’s function. The first region corresponds to the far zone, |Z−Z ′| � b, where the

Green’s function is just a potential of a point charge in a pipe. The second region corresponds

to the vicinity of the source, |Z − Z ′| � a, in which case the free space approximation can

be used. Both of these regions allow for accurate and compact analytical expressions for

G(0, Z − Z ′). Furthermore, we can be combined these expressions together in a single

analytical expression due to a broad overlap region, b � |Z − Z ′| � a, which corresponds

to a point charge in a free space.

In the first region, |Z − Z ′| � b, the sum in Eq. (7) converges rapidly due to vanishing

exponential factors exp(−µ0,n|Z − Z ′|/a). The actual number of terms contributing to the

sum can be estimated as µ0,n|Z − Z ′|/a ∼ 1. Under this condition, cn ' 1, resulting in the
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FIG. 3. (Color online) The on-axis Green’s function, G(0, z− z′) in the case of uniform transverse

charge density with b/a = 0.01 (red squares). The near (dashed blue) and far (dot-dashed green)

zone contributions are plotted separately. The boundaries of these zones |Z − Z ′| = µ−1
0,1a and

|Z − Z ′| = b are marked by the vertical dashed lines. Transformation to the lab frame substitutes

Z → γz thus scaling the transitions points to µ−1
0,1a/γ and b/γ correspondingly.

expression for the on-axis potential from a point charge on the pipe axis [6]. A compact

form representation for the on-axis Green’s function in the far zone is hence a sum of the

geometric series:

G(0, Z − Z ′) ≈ 1

a

πe−µ0,1|Z−Z
′|/a

1− e−π|Z−Z′|/a , |Z − Z
′| � b, (9)

where we have used that µ0,n − µ0,1 ≈ π(n− 1) and µ0,nJ1(µ0,n)2 ≈ 2/π.

The second region is in the vicinity of the source, |Z −Z ′| � a. Hence, one can ignore a

boundary effect of the pipe surface but has to account for an actual transverse charge density,

ρ⊥(r). In the absence of the boundary effect the convergence of the sum in Eq. (7) is defined

by cn rather than by the exponent. Hence, one can replace summation with integration.

We chose the integration variable to be x = µ0,n with the Jacobian of this transformation

dn/dx ' 1/π:

G(0, Z − Z ′) ≈ 1

a

∫
d2r′ρ⊥(r′)

∫ ∞
0

J0(xr′/a)e−x|Z−Z
′|/adx. (10)

Carrying out one integration results in the following compact form representation of the

on-axis Green’s function

G(0, Z − Z ′) ≈
∫
d2r′

ρ⊥(r′)√
(Z − Z ′)2 + r′2

, |Z − Z ′| � a, (11)
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FIG. 4. (Color online) The on-axis Green’s function, red squares, and its analythical approximation,

blue line, for the uniform transverse charge density with b/a = 0.01. The inset shows the relative

error, ∆, between the exact and analytical representations of the on-axis response function. The red

dashed line corresponds to b/a = 0.1, while the green dot-dashed and solid orange lines correspond

to b/a = 0.05 and b/a = 0.01 respectively.

which is indeed the on-axis potential from a charged disk in free space. The Table I provides

examples of this potential for different transverse charge distributions.

So far, we have found two analytical representations for the on-axis Green’s function that

describe two physical limits. Figure 3 compares these approximate representations given by

Eqs. (9) and (11) with values of the on-axis Green’s function given in Eq. (7). It shows that

approximate expressions describe the on-axis Green’s function well within their applicability

regions. We note that there is an overlap region where two physical limits have common

domain of mutual applicability, b� |Z−Z ′| � a. This region is well defined when the beam

size is sufficiently smaller than the pipe radius, b < a, and correspond to the case where the

charge distribution can be already approximated by a point charge yet the presence of pipe

walls can be still ignored. In this region, both expressions result in the same asymptotic

form for the on-axis Green’s function and coincide with the expression for the point charge

potential in free space:

G(0, Z − Z ′) =
1

|Z − Z ′|
, b� |Z − Z ′| � a. (12)

This allows matching of the two analytical representations as their product divided by their

mutual asymptotic expression. As a result, the on-axis Green’s function in a perfectly

conducting pipe can be approximated with:
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ρ⊥(r) b
∫
d2r′ ρ⊥(r′)√

(Z−Z′)2+r′2

1
πb2
, r ≤ b 2xrms

2
b

1
|∆Z|+

√
∆Z2+1

2
πb2

(
1− r2

b2

)
, r ≤ b

√
6xrms

8
3b

1+3∆Z2/4

|∆Z|3+(∆Z2+1)3/2+3|∆Z|/2
1
πb2
e−r

2/b2 , r ≤ ∞
√

2xrms
√
π
b Erfc (|∆Z|) e∆Z2

TABLE I. The transverse density distributions with their rms sizes and the corresponding on-axis

Green’s functions in the vicinity of the sources with ∆Z = (Z − Z ′)/b.

G(0, Z − Z ′) ≈ |Z − Z
′|

a

πe−µ0,1|Z−Z
′|/a

1− e−π|Z−Z′|/a

∫
d2r′

ρ⊥(r′)√
(Z − Z ′)2 + r′2

, (13)

for b < a and |Z − Z ′| ∈ (0,∞).

The main advantage of using the compact form expression is its simplicity. In contrast,

evaluation of an exact Green’s function described with Eq. (7) requires summation of a large

number of terms and takes a significant amount of time. Figure 4 shows the comparison

between these two approaches for the uniform transverse charge distribution with b/a = 0.01.

The inset shows the relative error of using the approximate Green’s function instead of exact.

The absolute error is the largest at Z = Z ′ but does not exceed 0.87069/a based on a simple

method of summing Bessel series proposed by Greenwood in Ref. [10].

IV. THE INTEGRATED GREEN’S FUNCTION APPROACH

In the previous section, we have provided a compact form for the Green’s function that

describes an axially symmetric space charge problem. Using this result, the longitudinal

space charge field takes on the following form for the translationally invariant transverse

distributions

Ez(r, z) =
1

4πε0γ

∫ ∞
−∞

λ(z′)
∂

∂z′
gz(r, z − z′)dz′, (14)

with gz(r, z − z′) = J0

(
r
γ
∂
∂z

)
g(0, z − z′). The operational form for the Green’s function

suggested in Eq. 8 also allows for a similar representation for the transverse component of

the space charge induced field

Er(r, z) =
1

4πε0

∫ ∞
−∞

λ(z′)
∂

∂z′
gr(r, z − z′)dz′, (15)
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with gr(r, z − z′) = −J1

(
r
γ
∂
∂z

)
g(0, z − z′) [17]. This solution for the space charge problem

allows for efficient numerical evaluation based on the Integrated Green’s function approach

[1, 19, 21].

For the purposes of providing a recipe for numerical evaluation of the Eqs. 14 and 15, we

will use the Integrated Green’s function approach in a constant function basis. This approach

approximates the charge density as λ(z′) = (λj+1 + λj) /2 within a cell of the computational

domain, z′ ∈ [zj, zj+1] for zj = jh, and arrives to the following discrete convolution

Er,z(zi) = hAr,z
∑
j

λjw
i−j
r,z , (16)

with normalization constants Ar = 1/4πε0 and Az = Ar/γ.

The Green’s functions derived in this paper behave differently near the source. Namely,

the longitudinal Green’s function, gz(r, z−z′), is a continuous function of z, while the radial

Green’s function, gr(r, z − z′), has a discontinuity at z = z′. Taking this into account, leads

to the following integrated Green’s function for the longitudinal component

wz(ζ) =
gz(r, ζ − h)− gz(r, ζ + h)

2h
, (17)

with ζ = h(i− j); and for the radial component:

wr(ζ) =
gr(r, ζ − h)− gr(r, ζ + h)

2h
+

1

h
gr(r, 0

−)δζ,(−h,0,h), (18)

where wr(h) uses the Green’s function defined for z ≥ z′ in order to evaluate gr(r, 0), while

wr(−h) and gr(r, 0
−) use z ≤ z′ definition.

V. DISCUSSION

Equation 13 is the main result of the paper that has allowed us to express the space charge

induced fields in terms of the Green’s functions that have simple analythical representation.

Equations 14 and 15 with the corresponding Green’s function are the next important result

of this paper. These expressions for the components of the field can be efficiently evaluated

using the Integrated Green’s functions, Eqs. 17 and 18.

It is often a case that the transverse beam size is a smallest scale of the problem and

that only the space charge induced fields within the beam are of interest. Thus, the particle

accelerator codes, similar to Elegant, include only the effects of the space charge induced
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fields at r = 0. X-ray free electron lasers often operate in a space charge dominated regime

and a more diligent treatment of the space charge induced fields is in order. In what follows

we will illustrate the steps required to obtain the off-axis behavior for the components of

the space charge induces field.

The radial component of the space charge induced field, evaluated on zi = ih grid, is

equal to Er(zi) = hAr
∑

j λjw
i−j
r , where λj is a space charge distribution on the same grid

and Ar = 1/4πε0. Equation 18 defines the integrated Green’s function, wr(ζ), in terms of

gr(r, z − z′) = −r
2

∂

γ∂z
g(0, z − z′), (19)

where we have kept the leading term in the Taylor series expansion of J1(x) for the purpose

of illustration only. In order to evaluate the derivation of the on-axis Green’s function, we

can apply the logic used in deriving the analythical representation of the on-axis Green’s

function itself and arrive to the following expression:

∂

∂Z
G(0, Z − Z ′) ≈ |Z − Z

′|3

a

(
∂

∂Z

πe−µ0,1|Z−Z
′|/a

1− e−π|Z−Z′|/a

)∫
d2r′

ρ⊥(r′)

[(Z − Z ′)2 + r′2]3/2
. (20)

Evaluation of the longitudinal component of the space charge induced field follows the

same steps but uses Az = Ar/γ and wz(ζ) as defined in Eq. 17 in terms of

gz(r, z − z′) =

(
1− r2

4

∂2

γ2∂z2

)
g(0, z − z′), (21)

where we have kept the first two leading terms in the Taylor series expansion of J0(x) for the

purpose of illustration only. The second term requires the second derivative of the on-axis

Green’s function that has the following form:

∂2

∂Z2
G(0, Z − Z ′) ≈ |Z − Z

′|3

2a

(
∂2

∂Z2

πe−µ0,1|Z−Z
′|/a

1− e−π|Z−Z′|/a

)∫
d2r′

ρ⊥(r′) [2(Z − Z ′)2 − r′2]

[(Z − Z ′)2 + r′2]5/2
. (22)

From the provided illustration, the solution of the space charge problem at r = 0 requires

a single evaluation of a discreet convolution. An additional convolution provides a linear

contribution to the radial component of the space charge induced field. The third convolution

can be also carried out in order to find a next order correction to the longitudinal component

of the space charge induced field. One can apply the illustrated approach in order to find

the next order corrections with computational effort that scales linearly with number of

corrections.

10



VI. CONCLUSIONS

We have studied the space charge problem for the beam with axially symmetric charge

distribution in a smooth perfectly conducting pipe. We have develop a Green’s function-

based description for the space charge induced fields that is valid in the full range of current

variations and applicable to beams with varying beam radius. The Green’s function dis-

cussed in the paper corresponds to the electrostatic potential of a charged disk in a pipe

and is completely defined by its behavior on the pipe axis due to axial symmetry.

We have found a compact analytical approximation for the on-axis Green’s function

that allows for analytical calculation of the Green’s function off axis. Having a compact

representation of the on-axis behavior of the response function can improve semi-analytical

codes, such as Elegant, as it offers a significant advantage over numerical evaluation of the

exact solution.

Finally, we have provided a detail prescription based on the Integrated Green’s function

approach for efficient numerical evaluation of the fields in the case of translational symmetry.

This approach describes transverse as well as longitudinal component of the space charge

induced field and scales linearly with the number of radial corrections.

Appendix A: Green’s function

The Green’s function for the Laplace’s equation inside a perfectly conducting pipe must

satisfy the following equation

∇2Γ(R|R′) = −4πδ(R−R′) (A1)

with the boundary condition Γ(R = a) = 0 and Γ(Z → ±∞) = 0.

To find a Green’s function, it is common to expand the Green’s function in terms of

axial eigenfunction solutions of the Laplace’s problem in cylindrical coordinates, eikZ . Here,

however, the radial eigenfunction expansion is used in order to allow for beam size variation

along the beam. Thus

Γ(R|R′) =
∞∑

m=−∞

∞∑
n=1

Gm,n(Z|R′)Jm(µm,nR/a)eimΦ, (A2)

where Jm is the ordinary Bessel’s function of order m and µm,n is defined as a solution of
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Jm (µm,n) = 0. Substituting this expansion in A1 we find that

∇2Γ(R|R′) =
∞∑

m=−∞

∞∑
n=1

[
d2Gm,n(Z|R′)

dZ2
−
µ2
m,n

a2
Gm,n(Z|R′)

]
Jm(µm,nR/a)eimΦ. (A3)

With the help of the orthogonality properties for the Bessel’s function, we can now obtain

that

d2Gm,n(Z|R′)
dZ2

−
µ2
m,n

a2
Gm,n(Z|R′) = − 4

a2Jm+1(µm,n)2
Jm(µm,nR

′/a)e−imΦ′
δ(Z − Z ′). (A4)

Then, if we look at the points where z 6= z′, (A4) becomes a simple eigen function problem

with a well known solution

Gm,n(Z|R′) = gm,n(R′,Φ′)e−µm,n|Z−Z′|/a. (A5)

The condition for the discontinuity of the first derivative at Z = Z ′ yields that

gm,n(R′,Φ′) =
2

aµm,nJm+1(µm,n)2
Jm(µm,nR

′/a)e−imΦ′
. (A6)

Finally, the Green’s function for axially symmetric charge distributions is

Γ(R,Z|R′, Z ′) =
∞∑
n=1

2

aµ0,nJ1(µ0,n)2
J0(µ0,nR/a)J0(µ0,nR

′/a)e−µ0,n|Z−Z
′|/a, (A7)

Appendix B: Comparison with previous results

Let us apply the results of the paper for analytical analysis of the space charge problem.

In what follows, we will use Eq. 14 in order to derive a previously known expressions for the

longitudinal component of the charge induced electric field in long- [7] and short-scale [20]

current variation limits.

The short-scale current variations commonly arise due to microbunching instability that

is driven by the longitudinal component of the space charge induced electric field. It is

common to assume a beam with a circular cross section of radius b and a constant transverse

density profile. In the case that observation point is located on-axis (r = 0), one defines an

impedance (per unit length) Z(k) as:

Ez(k) = −Z(k)I(k), (B1)

12



where I(k) is the Fourier component of the current I(z) = cλ(z), with λ(k) = (2π)−1
∫∞
−∞ λ(z)e−ikzdz.

The impedance that has been implemented in Elegant [4] to simulate space charge effect on

a beam in a drift space [12] is

Z(k) =
i

πε0ckb2

[
1− kb

γ
K1

(
kb

γ

)]
, (B2)

where K1 is the modified Bessel function of the second kind [20].

The longitudinal space charge impedance in Eq. B2 is valid in the short-wavelength limit,

k →∞, where the effect of boundaries can be neglected. The impedance that includes the

effect of boundaries has the following long-wavelength limit:

Z(k → 0) =
i

4πε0c

k

γ2

[
1− 2 log

(
b

a

)]
, (B3)

according to Ref. [23]. This impedance corresponds to the on-axis case of another well-

known expression for the longitudinal component of the space charge induced electric field

[7]:

Ez(r, z) ≈ − 1

4πε0cγ2

dI(z)

dz

[
1− r2

b2
− 2 log

(
b

a

)]
. (B4)

1. Long-scale current variation limit

We begin our comparison with a long-scale current variation limit. According to Eq. B4,

the longitudinal component of the space charge induced electric field is proportional to

the current derivative. Integrating Eq. 14 by parts and assuming that charge derivative,

dλ(z)/dz = c−1dI(z)/dz, is constant on a scale δz � a/γ, we obtain the following expression

for the longitudinal component of the space charge induced electric field:

Ez(r, z) = − 1

4πε0cγ2

dI(z)

dz

∫ ∞
−∞

G(r, Z ′)dZ ′, (B5)

where the Green’s function is G(r, Z ′) = G(0, Z ′)− r2

4
∂2

∂Z′2G(0, Z ′).

The r2-term for the longitudinal component of the space charge induced field is propor-

tional to the integral of the second derivative of the on-axis Green’s function, which is equal

to −2 ∂
∂Z′G(0, Z ′ → 0+). Let us recall here that the on-axis Green’s function is the electro-

static potential of a charge disk and thus its negative derivative is equal to electric field.

Using EZ(0, z → 0+) = 2πρ⊥(0) for the uniform transverse charge distribution, one obtains

that the value of coefficient is 4/b2.

13



The integral of the on-axis Green’s function for the uniform transverse charge distribution

is ∫ ∞
−∞

G(0, Z ′)dz′ =
1

x

∞∑
n=1

8

µ3
0,nJ1(µ0,n)2

J1 (µ0,nx) , (B6)

with x = b/a. Thus, in order to show the equivalence with Eq. B4, one has to show that

x(1− 2 log x) =
∞∑
n=1

8

µ3
0,nJ1(µ0,n)2

J1 (µ0,nx) , (B7)

which is the case of Dini expansion of the function.

The Dini expansion of a function defined on the interval x ∈ [0, 1] with the following

boundary condition f(1) + f ′(1) = 0 is f(x) =
∑∞

n=1 cnJ1(µ0,nx) with the coefficients

cn =
2

J1 (µ0,n)2

∫ 1

0

xf(x)J1 (µ0,nx) dx. (B8)

Based on recursion relations J1(x) = −dJ0(x)/dx and J0(x) = x−1d[xJ1(x)]/dx, one can

show that the expansion coefficients of f(x) = x (1− 2 log x) are indeed equal to cn =

8/µ3
0,nJ1(µ0,n)2 and prove Eq. (B7). Thus, we conclude that the Green’s function based

approach reproduces the well-known result for the longitudinal component of the space

charge induced field in the limit of a long-scale current variation and constant beam radius

[7].

2. Short-range current variation

The Green’s function description, presented in this paper provides an alternative expres-

sion for the longitudinal space charge impedance:

Z(k) =
ik

cγ2

∫ ∞
−∞

e−ikz
′/γΦ (0, 0, z′) dz′, (B9)

and thus is determined by the Fourier spectrum of the on-axis response function. Evaluation

of the Fourier spectrum of the on-axis response function according to Eq. (8), leads to the

following representation of the longitudinal space charge impedance:

Ẑlsc(k) =
i

πε0ckb2

[
b

a

∞∑
n=1

An
1 + µ2

0,nγ
2/k2a2

J1

(
µ0,n

b

a

)]
, (B10)

where the sum is due to the presence of the pipe.

14



The free space approximation used to describe the limit of short-range current variations

ignores the presence of the pipe. Thus it replaces the discrete modes spectrum inside the

pipe with the continuous spectrum of the free space. This reflects the fact that a large

number of transverse modes contribute to the space charge filed. In this case consecutive

terms in the sum in Eq. (B10) are close to each other and the sum can be replaced with the

integral. Transition from the sum to an integral over x = bµ0,n/a has the following Jacobian

dn/dx = a/πb. The resulting integral on an interval x ∈ [0,∞] is known and leads to the

expression given by Eq. (B2).
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